
ISG D-PHYS

Git Version Control
Stephan Müller, ISG D-PHYS
HS 2025

Schedule

IT Security
Linux Basics I + II
Git Version Control
Python Ecosystem I - IV
System Aspects

• Checkout compenv.phys.ethz.ch
• Give Feedback!

– isg@phys.ethz.ch
– chat.phys.ethz.ch
– HPT H

compenv.phys.ethz.ch FS 2025 1/19

”git gets easier once you get the basic idea that branches are homeomorphic
endofunctors mapping submanifolds of a Hilbert space.”

compenv.phys.ethz.ch FS 2025 2/19

”git gets easier once you get the basic idea that branches are homeomorphic
endofunctors mapping submanifolds of a Hilbert space.”

compenv.phys.ethz.ch FS 2025 2/19

Learning Goals

• Git 6= GitHub
• Fundamental Concepts

– Commit
– HEAD
– branch
– Work Dir + Index + Log

• History Concepts
– Inspect
– Navigate
– Modify

• Remotes

compenv.phys.ethz.ch FS 2025 3/19

Why use a version control system?

Does your project look like this?

Benefits
• Tracking changes
• Experimentation
• Collaboration

– If not now, maybe later
• Easy rollbacks
• Storage efficiency
• Simplified backups
• Looks good in your CV

compenv.phys.ethz.ch FS 2025 4/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)
• Mercurial (hg)
• Fossil

– good Git alternative
• game of trees (got)

– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)
• Mercurial (hg)
• Fossil

– good Git alternative
• game of trees (got)

– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)

• Concurent Version System (cvs)
• Mercurial (hg)
• Fossil

– good Git alternative
• game of trees (got)

– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)

• Mercurial (hg)
• Fossil

– good Git alternative
• game of trees (got)

– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)
• Mercurial (hg)

• Fossil
– good Git alternative

• game of trees (got)
– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)
• Mercurial (hg)
• Fossil

– good Git alternative

• game of trees (got)
– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)
• Mercurial (hg)
• Fossil

– good Git alternative
• game of trees (got)

– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)
• Mercurial (hg)
• Fossil

– good Git alternative
• game of trees (got)

– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)
• Mercurial (hg)
• Fossil

– good Git alternative
• game of trees (got)

– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)
• Mercurial (hg)
• Fossil

– good Git alternative
• game of trees (got)

– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)
• Mercurial (hg)
• Fossil

– good Git alternative
• game of trees (got)

– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Version Control Systems: Git 6= Github

Definition: Version Control System
A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

• Git
– De facto standard in open source
– Built in 2005 to manage the Linux kernel

source code
– ”I named it Git – because I am a git.”

• SubVersion (svn)
• Concurent Version System (cvs)
• Mercurial (hg)
• Fossil

– good Git alternative
• game of trees (got)

– git compatable, but easier

Definition: Software Forge
A forge is a central web-based platform for collaboration
hosting extra tools

• Version control
• Bug tracking
• Continious Integration

• GitHub
– github.com

• GitLab
– gitlab.phys.ethz.ch
– gitlab.ethz.ch

• Gitea
– Easy self-hosting

• Codeberg.org
• ...

compenv.phys.ethz.ch FS 2025 5/19

Git Concepts: Commits & HEAD

• Git tracks files and directories
• Git remebers all snapshots

– Work on files & git commit

– Work on files & git commit

• You always have a coherent view on all files

– You can move back and forth in history
I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:

– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Commits & HEAD

• Git tracks files and directories

• Git remebers all snapshots
– Work on files & git commit

– Work on files & git commit

• You always have a coherent view on all files

– You can move back and forth in history
I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:

– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

A1

B1

C1

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Commits & HEAD

• Git tracks files and directories

• Git remebers all snapshots
– Work on files & git commit

– Work on files & git commit

• You always have a coherent view on all files

– You can move back and forth in history
I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:

– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

Commit 1

A1

B1

C1

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Commits & HEAD

• Git tracks files and directories
• Git remebers all snapshots

– Work on files & git commit

– Work on files & git commit

• You always have a coherent view on all files

– You can move back and forth in history
I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:

– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

A2

B1

C2

Commit 2

∆A1

∆C1

Commit 1

A1

B1

C1

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Commits & HEAD

• Git tracks files and directories
• Git remebers all snapshots

– Work on files & git commit
– Work on files & git commit

• You always have a coherent view on all files

– You can move back and forth in history
I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:

– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

A2

B1

C2

Commit 2

∆A1

∆C1

Commit 1

A1

B1

C1

A2

B1

C3

Commit 3

∆C2

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Commits & HEAD

• Git tracks files and directories
• Git remebers all snapshots

– Work on files & git commit
– Work on files & git commit

• You always have a coherent view on all files

– You can move back and forth in history
I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:

– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

A2

B1

C3

Commit 3

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Commits & HEAD

• Git tracks files and directories
• Git remebers all snapshots

– Work on files & git commit
– Work on files & git commit

• You always have a coherent view on all files
– You can move back and forth in history

I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:

– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

Commit 1

A1

B1

C1

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Commits & HEAD

• Git tracks files and directories
• Git remebers all snapshots

– Work on files & git commit
– Work on files & git commit

• You always have a coherent view on all files
– You can move back and forth in history

I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:

– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

Commit 1

A1

B1

C1

A2

B1

C3

Commit 3

∆A1

∆C1 ∪∆C2

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Commits & HEAD

• Git tracks files and directories
• Git remebers all snapshots

– Work on files & git commit
– Work on files & git commit

• You always have a coherent view on all files
– You can move back and forth in history

I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:
– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

A2

B1

C3

9e1e47

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Commits & HEAD

• Git tracks files and directories
• Git remebers all snapshots

– Work on files & git commit
– Work on files & git commit

• You always have a coherent view on all files
– You can move back and forth in history

I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:
– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

A2

B1

C3

9e1e47

HEAD

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Commits & HEAD

• Git tracks files and directories
• Git remebers all snapshots

– Work on files & git commit
– Work on files & git commit

• You always have a coherent view on all files
– You can move back and forth in history

I git switch Commit1∗

– You can compare diffenrent versions
I git diff Commit1..Commit3

• Commits have hash names:
– 9e1e4739a9ca2e4750011ceaac818c16982e
– 9e1e47 - any prefix is OK, if it is unique

• The current commit is refered to as HEAD

Definition: HEAD
HEAD is a spacial pointer, referring to the commit∗ your
working tree is currently based on.

Definition: Commit
A commit is a snapshot on all tracked files at a given
time.

(It is NOT the ”diff” between versions)

A2

B1

C3

9e1e47

HEAD

compenv.phys.ethz.ch FS 2025 6/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch

– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)
Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch

– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch

– The branch moves with the HEAD pointer
• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

a631

HEAD

main

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

a631

HEAD

main

e82a

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

a631

HEAD

main

e82a

idea

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

a631

main

e82a

idea

HEAD

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

11a3

idea

HEAD

a631

main

e82a

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

11a3a631

main

e82a ac0a

idea

HEAD

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

11a3a631

main

e82a ac0a

idea

HEAD

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

11a3a631 e82a ac0a

idea

6ffa

main

HEAD

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

11a3a631 e82a ac0a

idea

6ffa 51c1

main

HEAD

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

11a3a631 e82a ac0a

idea

6ffa 51c1 03fa

main

HEAD

merge -base 03fa ac0a

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

11a3a631 e82a ac0a

idea

6ffa 51c1 03fa

main

HEAD

merge -base 03fa ac0a

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

11a3a631 e82a ac0a

idea

6ffa 51c1 03fa

mainHEAD

git switch --detach 03fa

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Git Concepts: Branches

• History advances on branches
– The default branch is called main or master
– HEAD points to a branch
– The branch moves with the HEAD pointer

• git branch idea

– Create a new branch called ”idea”
– i.e. create a new pointer

• git switch idea

– Make the branch idea active
– i.e. move the HEAD pointer

• git switch main

– Switch back to branch main

• git merge idea

– Apply ”new deltas from idea” to main
– There may be merge conflicts!

Defintion: Branch
A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

11a3a631 e82a ac0a

idea

6ffa 51c1 03fa

mainHEAD

git switch --detach 6ffa

Detached HEAD
If HEAD does not point to a branch, it is called a
detached HEAD. git switch back to a branch!

compenv.phys.ethz.ch FS 2025 7/19

Getting Started

Installation
• Installation (git-scm.com/downloads)

– Linux/Mac: apt install git-all / brew install git
– Win: gitforwindows.org

• Command line interface
– git [verb] [options] [args]

I eg. git add A.txt
I eg. git log --oneline origin..HEAD

– man git-[verb]

Minimal first time config

• git config --global user.name "Ann Yusar" (or $GIT_AUTHOR_NAME)
• git config --global user.email "any@ethz.ch" (or $GIT_AUTHOR_EMAIL)
• git config --global core.editor vim (or $GIT_EDITOR)

compenv.phys.ethz.ch FS 2025 8/19

Getting Started

Installation
• Installation (git-scm.com/downloads)

– Linux/Mac: apt install git-all / brew install git
– Win: gitforwindows.org

• Command line interface
– git [verb] [options] [args]

I eg. git add A.txt
I eg. git log --oneline origin..HEAD

– man git-[verb]

Minimal first time config

• git config --global user.name "Ann Yusar" (or $GIT_AUTHOR_NAME)
• git config --global user.email "any@ethz.ch" (or $GIT_AUTHOR_EMAIL)
• git config --global core.editor vim (or $GIT_EDITOR)

compenv.phys.ethz.ch FS 2025 8/19

Local repository

• git works on directories

– git init creates .git/
• Commit History

– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index

– Area to draft a commit
– git add/restore --staged

• git commit

– Add changes to the history

I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

C1

A1

• Change A
• Change C
• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

Local repository

• git works on directories
– git init creates .git/

• Commit History

– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index

– Area to draft a commit
– git add/restore --staged

• git commit

– Add changes to the history

I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

C1

A1

Local Repository (.git/)

• Change A
• Change C
• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

Local repository

• git works on directories
– git init creates .git/

• Commit History
– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index

– Area to draft a commit
– git add/restore --staged

• git commit

– Add changes to the history

I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

C1

A1

Local Repository

Commit History

A1 B1

C1
HEAD

main

a631

(.git/objects/)

(.git/)(.git/)

• Change A
• Change C
• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

Local repository

• git works on directories
– git init creates .git/

• Commit History
– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index
– Area to draft a commit

– git add/restore --staged

• git commit

– Add changes to the history

I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

C1

A1

Local Repository

Commit History

A1 B1

C1

Staging Area
(.git/index)

HEAD

main

a631

(.git/objects/)

(.git/)

• Change A
• Change C
• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

Local repository

• git works on directories
– git init creates .git/

• Commit History
– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index
– Area to draft a commit

– git add/restore --staged

• git commit

– Add changes to the history

I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

C1

Local Repository

Commit History

A1 B1

C1

Staging Area

A2

HEAD

main

a631

(.git/index) (.git/objects/)

(.git/)

• Change A

• Change C
• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

Local repository

• git works on directories
– git init creates .git/

• Commit History
– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index
– Area to draft a commit

– git add/restore --staged

• git commit

– Add changes to the history

I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

Local Repository

Commit History

A1 B1

C1

Staging Area

A2

C2

HEAD

main

a631

(.git/index) (.git/objects/)

(.git/)

• Change A
• Change C

• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

Local repository

• git works on directories
– git init creates .git/

• Commit History
– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index
– Area to draft a commit
– git add/restore --staged

• git commit

– Add changes to the history

I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

Local Repository

Commit History

A1 B1

C1

Staging Area

A2

C2

git add A2

HEAD

main

a631

(git restore --staged)

(.git/index) (.git/objects/)

(.git/)

• Change A
• Change C
• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

Local repository

• git works on directories
– git init creates .git/

• Commit History
– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index
– Area to draft a commit
– git add/restore --staged

• git commit

– Add changes to the history

I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

Local Repository

Commit History

A1 B1

C1

Staging Area

A2

C2

A2

C2

HEAD

main

a631

git add

(.git/index) (.git/objects/)

(.git/)

• Change A
• Change C
• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

Local repository

• git works on directories
– git init creates .git/

• Commit History
– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index
– Area to draft a commit
– git add/restore --staged

• git commit

– Add changes to the history
I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

Local Repository

Commit History

A1 B1

C1

Staging Area

A2

C2

A2

C2

HEAD

main

a631

git commit

(.git/index) (.git/objects/)

(.git/)

• Change A
• Change C
• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

Local repository

• git works on directories
– git init creates .git/

• Commit History
– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index
– Area to draft a commit
– git add/restore --staged

• git commit

– Add changes to the history
I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

Local Repository

Commit History

A2 B1

C2

Staging Area

A2

C2
A1 B1

C1

HEAD

main

f611

a631

(.git/index) (.git/objects/)

(.git/)

• Change A
• Change C
• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

Local repository

• git works on directories
– git init creates .git/

• Commit History
– files, commits, ... are stored in .git/objects/
– Objects are indexed by their content

• Staging Area / Index
– Area to draft a commit
– git add/restore --staged

• git commit

– Add changes to the history
I Author and Date
I Commit message

– HEAD and branch pointer move
– Staging area is empty again

Working directroy

B1

Local Repository

Commit History

A2 B1

C2

Staging Area

A2

C2
A1 B1

C1

HEAD

main

f611

a631

(.git/index) (.git/objects/)

(.git/)

• Change A
• Change C
• git add A

• git add C

• git commit

How to keep the overview?
git status is your friend!

compenv.phys.ethz.ch FS 2025 9/19

A lot of git is about mananging its areas!

compenv.phys.ethz.ch FS 2025 10/19

Demo

Task
• Write some poems and version control them via git:

– Create a poem folder
– Initialize a git repositiory
– Add some poems
– Commit your work

• Tools:
– git init
– git add
– git commit

• Check regularly what is going on:
– git status
– tree -a

• mkdir poems

• cd poems

• git init

– Creates .git/
• (tree -a)
• (fd sample .git -x rm)

– Removes example files
• Write some poems
• git add geometry.txt flowers.txt

– Adds files to staging area
• (git status)
• git commit

– Adds a new commit

compenv.phys.ethz.ch FS 2025 11/19

Git States

Staged
In the staging area, not yet commited. Added
by a git add.

Clean
Tracked, unmodiefied compared to its last
version.

Modified
Tracked and different from its last version.

Stashed
Clean, because changes are stashed away
with git stash.

Untracked
Never added, git does not care.

A1 B1

C1
HEAD

main

a631

Working directroy

B1

Local Repository

Commit HistoryStaging Area

A2

C2

A2

D1

untracked

cleanstaged

modified Stashing Stack

E

stashed

compenv.phys.ethz.ch FS 2025 12/19

Git States

Staged
In the staging area, not yet commited. Added
by a git add.

Clean
Tracked, unmodiefied compared to its last
version.

Modified
Tracked and different from its last version.

Stashed
Clean, because changes are stashed away
with git stash.

Untracked
Never added, git does not care.

A1 B1

C1
HEAD

main

a631

Working directroy

B1

Local Repository

Commit HistoryStaging Area

A2

C2

A2

D1

untracked

cleanstaged

modified Stashing Stack

E

stashed

compenv.phys.ethz.ch FS 2025 12/19

Git States

Staged
In the staging area, not yet commited. Added
by a git add.

Clean
Tracked, unmodiefied compared to its last
version.

Modified
Tracked and different from its last version.

Stashed
Clean, because changes are stashed away
with git stash.

Untracked
Never added, git does not care.

A1 B1

C1
HEAD

main

a631

Working directroy

B1

Local Repository

Commit HistoryStaging Area

A2

C2

A2

D1

untracked

cleanstaged

modified Stashing Stack

E

stashed

compenv.phys.ethz.ch FS 2025 12/19

Git States

Staged
In the staging area, not yet commited. Added
by a git add.

Clean
Tracked, unmodiefied compared to its last
version.

Modified
Tracked and different from its last version.

Stashed
Clean, because changes are stashed away
with git stash.

Untracked
Never added, git does not care.

A1 B1

C1
HEAD

main

a631

Working directroy

B1

Local Repository

Commit HistoryStaging Area

A2

C2

A2

D1

untracked

cleanstaged

modified Stashing Stack

E

stashed

compenv.phys.ethz.ch FS 2025 12/19

Git States

Staged
In the staging area, not yet commited. Added
by a git add.

Clean
Tracked, unmodiefied compared to its last
version.

Modified
Tracked and different from its last version.

Stashed
Clean, because changes are stashed away
with git stash.

Untracked
Never added, git does not care.

A1 B1

C1
HEAD

main

a631

Working directroy

B1

Local Repository

Commit HistoryStaging Area

A2

C2

A2

D1

untracked

cleanstaged

modified Stashing Stack

E

stashed

compenv.phys.ethz.ch FS 2025 12/19

Inspecting History: git log

Inspect the commit log

• git log [<options>] [<revision-range>] [-- file]

--stat: Show statistics, how many changes per file
--patch / -p: Show differences
--graph: Draw history as graph
--max-count/-n N: Show at most N commits
--all: Add all branches (to rev-range)
--oneline: Only show summary line
-- FILE: Show commits which changed FILE

git log --oneline d479..064c
git log --oneline ^d479 064c

064c6f1 (HEAD -> main) Fix flower poem

• Show everything reachable from 064c

• Exclude everything reachable from d479

git log --oneline main..2ndVerse

ce2e2f0 (2ndVerse) Improve math
d479f9f Add 1st draft

• What is on 2ndVerse but not on main?

compenv.phys.ethz.ch FS 2025 13/19

Inspecting History: git log

Inspect the commit log

• git log [<options>] [<revision-range>] [-- file]

--stat: Show statistics, how many changes per file
--patch / -p: Show differences
--graph: Draw history as graph
--max-count/-n N: Show at most N commits
--all: Add all branches (to rev-range)
--oneline: Only show summary line
-- FILE: Show commits which changed FILE

git log --oneline --all --graph

* 064c6f1 (HEAD -> main) Fix flower poem
| * ce2e2f0 (2ndVerse) Improve math
| * d479f9f Add 1st draft
|/
* a51df54 Make it rhyme
* 93fde7d Complete flower poem
* ed74ade Add poems

git log --oneline d479..064c
git log --oneline ^d479 064c

064c6f1 (HEAD -> main) Fix flower poem

• Show everything reachable from 064c

• Exclude everything reachable from d479

git log --oneline main..2ndVerse

ce2e2f0 (2ndVerse) Improve math
d479f9f Add 1st draft

• What is on 2ndVerse but not on main?

main

a51d

93fd

ed74

d479

ce2e 2ndVerse

064c
HEAD

compenv.phys.ethz.ch FS 2025 13/19

Inspecting History: git log

git log --oneline d479..064c
git log --oneline ^d479 064c

064c6f1 (HEAD -> main) Fix flower poem

• Show everything reachable from 064c

• Exclude everything reachable from d479

git log --oneline main..2ndVerse

ce2e2f0 (2ndVerse) Improve math
d479f9f Add 1st draft

• What is on 2ndVerse but not on main?

main

a51d

93fd

ed74

d479

ce2e 2ndVerse

064c
HEAD

compenv.phys.ethz.ch FS 2025 13/19

Inspecting History: git log

git log --oneline d479..064c
git log --oneline ^d479 064c

064c6f1 (HEAD -> main) Fix flower poem

• Show everything reachable from 064c

• Exclude everything reachable from d479

git log --oneline main..2ndVerse

ce2e2f0 (2ndVerse) Improve math
d479f9f Add 1st draft

• What is on 2ndVerse but not on main?

main

a51d

93fd

ed74

d479

ce2e 2ndVerse

064c
HEAD

compenv.phys.ethz.ch FS 2025 13/19

Inspecting History: git log

git log --oneline d479..064c
git log --oneline ^d479 064c

064c6f1 (HEAD -> main) Fix flower poem

• Show everything reachable from 064c

• Exclude everything reachable from d479

git log --oneline main..2ndVerse

ce2e2f0 (2ndVerse) Improve math
d479f9f Add 1st draft

• What is on 2ndVerse but not on main?

main

a51d

93fd

ed74

d479

ce2e 2ndVerse

064c
HEAD

compenv.phys.ethz.ch FS 2025 13/19

Inspecting History: git log

git log --oneline d479..064c
git log --oneline ^d479 064c

064c6f1 (HEAD -> main) Fix flower poem

• Show everything reachable from 064c

• Exclude everything reachable from d479

git log --oneline main..2ndVerse

ce2e2f0 (2ndVerse) Improve math
d479f9f Add 1st draft

• What is on 2ndVerse but not on main?

main

d479

ce2e 2ndVerse

HEAD

compenv.phys.ethz.ch FS 2025 13/19

Navigating History

Moving HEAD
git reset [<mode>] 93fd

Move HEAD and its branch to a commit.

--mixed: Update Index (Default)
--soft: Update nothing
--hard Update Index + Workdir

– You will lose changes!

Switching branches
git switch <branch>

• Supersedes git checkout

git switch 2ndVerse

• Move HEAD to 2ndVerse

• Update Working Dir

Working directroy

main

a51d

93fd

ed74

d479

ce2e
2ndVerse

064c HEAD

F2 G1

F2 G2

F3 G2

F2 G3

F2 G4

F1 G1

F4 G2

Index

F4

cleanstaged

Log

compenv.phys.ethz.ch FS 2025 14/19

Navigating History

Moving HEAD
git reset [<mode>] 93fd

Move HEAD and its branch to a commit.
--mixed: Update Index (Default)

--soft: Update nothing
--hard Update Index + Workdir

– You will lose changes!

Switching branches
git switch <branch>

• Supersedes git checkout

git switch 2ndVerse

• Move HEAD to 2ndVerse

• Update Working Dir

Working directroy

main

a51d

93fd

ed74

d479

ce2e
2ndVerse

064c

HEADF2 G1

F2 G2

F3 G2

F2 G3

F2 G4

F1 G1

F4 G2

Index

dirtydirty

Log

compenv.phys.ethz.ch FS 2025 14/19

Navigating History

Moving HEAD
git reset [<mode>] 93fd

Move HEAD and its branch to a commit.
--mixed: Update Index (Default)
--soft: Update nothing

--hard Update Index + Workdir
– You will lose changes!

Switching branches
git switch <branch>

• Supersedes git checkout

git switch 2ndVerse

• Move HEAD to 2ndVerse

• Update Working Dir

Working directroy

main

a51d

93fd

ed74

d479

ce2e
2ndVerse

064c

HEADF2 G1

F2 G2

F3 G2

F2 G3

F2 G4

F1 G1

F4 G2

Index

dirtystaged

Log

F4

compenv.phys.ethz.ch FS 2025 14/19

Navigating History

Moving HEAD
git reset [<mode>] 93fd

Move HEAD and its branch to a commit.
--mixed: Update Index (Default)
--soft: Update nothing
--hard Update Index + Workdir

– You will lose changes!

Switching branches
git switch <branch>

• Supersedes git checkout

git switch 2ndVerse

• Move HEAD to 2ndVerse

• Update Working Dir

Working directroy

main

a51d

93fd

ed74

d479

ce2e
2ndVerse

064c

HEADF2 G1

F2 G2

F3 G2

F2 G3

F2 G4

F1 G1

F2 G1

Index

cleanclean

Log

compenv.phys.ethz.ch FS 2025 14/19

Navigating History

Moving HEAD
git reset [<mode>] 93fd

Move HEAD and its branch to a commit.
--mixed: Update Index (Default)
--soft: Update nothing
--hard Update Index + Workdir

– You will lose changes!

Switching branches
git switch <branch>

• Supersedes git checkout

git switch 2ndVerse

• Move HEAD to 2ndVerse

• Update Working Dir

Working directroy

main

a51d

93fd

ed74

d479

ce2e
2ndVerse

064c HEAD

F2 G1

F2 G2

F3 G2

F2 G3

F2 G4

F1 G1

F3 G2

Index

cleanclean

Log

compenv.phys.ethz.ch FS 2025 14/19

Navigating History

Moving HEAD
git reset [<mode>] 93fd

Move HEAD and its branch to a commit.
--mixed: Update Index (Default)
--soft: Update nothing
--hard Update Index + Workdir

– You will lose changes!

Switching branches
git switch <branch>

• Supersedes git checkout

git switch 2ndVerse

• Move HEAD to 2ndVerse

• Update Working Dir

Working directroy

main

a51d

93fd

ed74

d479

ce2e
2ndVerse

064c HEAD

F2 G1

F2 G2

F3 G2

F2 G3

F2 G4

F1 G1

F3 G2

Index

cleanclean

Log

compenv.phys.ethz.ch FS 2025 14/19

Navigating History

Moving HEAD
git reset [<mode>] 93fd

Move HEAD and its branch to a commit.
--mixed: Update Index (Default)
--soft: Update nothing
--hard Update Index + Workdir

– You will lose changes!

Switching branches
git switch <branch>

• Supersedes git checkout

git switch 2ndVerse

• Move HEAD to 2ndVerse

• Update Working Dir

Working directroy

main

a51d

93fd

ed74

d479

ce2e
2ndVerse

064c

HEAD

F2 G1

F2 G2

F3 G2

F2 G3

F2 G4

F1 G1

F2 G4

Index

Log

compenv.phys.ethz.ch FS 2025 14/19

Rebasing: Rewriting History

Re-apply commits to a new base
git rebase [<options>] <upstream>

• Re-apply differences with upstream on top of upstream
--interactive/-i: Manually apply changes

git rebase main

• Apply changes not in main on top of main

– Identify commits: git log upstream..HEAD
– (Hard reset) Workdir to upstream

and calculate patches ∆1, ∆2 and remove commits
– Apply patches, one-by-one
– Move branches

Benefits of rebase
• Avoids merges, keeps the history simple.
• Rework commits (or their massages)
• NEVER REBASE SHARED COMMITS!

a51d

93fd

d479

ce2e feat

064c

HEAD

aacf main

compenv.phys.ethz.ch FS 2025 15/19

Rebasing: Rewriting History

Re-apply commits to a new base
git rebase [<options>] <upstream>

• Re-apply differences with upstream on top of upstream
--interactive/-i: Manually apply changes

git rebase main

• Apply changes not in main on top of main
– Identify commits: git log upstream..HEAD

– (Hard reset) Workdir to upstream
and calculate patches ∆1, ∆2 and remove commits

– Apply patches, one-by-one
– Move branches

Benefits of rebase
• Avoids merges, keeps the history simple.
• Rework commits (or their massages)
• NEVER REBASE SHARED COMMITS!

main

a51d

93fd

d479

ce2e feat

064c

HEAD

aacf

(upstream)

2

compenv.phys.ethz.ch FS 2025 15/19

Rebasing: Rewriting History

Re-apply commits to a new base
git rebase [<options>] <upstream>

• Re-apply differences with upstream on top of upstream
--interactive/-i: Manually apply changes

git rebase main

• Apply changes not in main on top of main
– Identify commits: git log upstream..HEAD
– (Hard reset) Workdir to upstream

and calculate patches ∆1, ∆2 and remove commits

– Apply patches, one-by-one
– Move branches

Benefits of rebase
• Avoids merges, keeps the history simple.
• Rework commits (or their massages)
• NEVER REBASE SHARED COMMITS!

main

a51d

93fd

d479

ce2e feat

064c

HEADaacf

(upstream)

∆1

∆2

during rebase

compenv.phys.ethz.ch FS 2025 15/19

Rebasing: Rewriting History

Re-apply commits to a new base
git rebase [<options>] <upstream>

• Re-apply differences with upstream on top of upstream
--interactive/-i: Manually apply changes

git rebase main

• Apply changes not in main on top of main
– Identify commits: git log upstream..HEAD
– (Hard reset) Workdir to upstream

and calculate patches ∆1, ∆2 and remove commits
– Apply patches, one-by-one

– Move branches

Benefits of rebase
• Avoids merges, keeps the history simple.
• Rework commits (or their massages)
• NEVER REBASE SHARED COMMITS!

main

a51d

93fd

d479

ce2e feat

064c

aacf

(upstream)

∆1

∆2

10f1

∆1

HEAD

during rebase

compenv.phys.ethz.ch FS 2025 15/19

Rebasing: Rewriting History

Re-apply commits to a new base
git rebase [<options>] <upstream>

• Re-apply differences with upstream on top of upstream
--interactive/-i: Manually apply changes

git rebase main

• Apply changes not in main on top of main
– Identify commits: git log upstream..HEAD
– (Hard reset) Workdir to upstream

and calculate patches ∆1, ∆2 and remove commits
– Apply patches, one-by-one

– Move branches

Benefits of rebase
• Avoids merges, keeps the history simple.
• Rework commits (or their massages)
• NEVER REBASE SHARED COMMITS!

main

a51d

93fd

d479

ce2e feat

064c

aacf

(upstream)

∆1

∆2

10f1

∆1

during rebase

9844

∆2

HEAD

compenv.phys.ethz.ch FS 2025 15/19

Rebasing: Rewriting History

Re-apply commits to a new base
git rebase [<options>] <upstream>

• Re-apply differences with upstream on top of upstream
--interactive/-i: Manually apply changes

git rebase main

• Apply changes not in main on top of main
– Identify commits: git log upstream..HEAD
– (Hard reset) Workdir to upstream

and calculate patches ∆1, ∆2 and remove commits
– Apply patches, one-by-one
– Move branches

Benefits of rebase
• Avoids merges, keeps the history simple.
• Rework commits (or their massages)
• NEVER REBASE SHARED COMMITS!

main

a51d

93fd

064c

aacf

10f1

rebase done

9844 feat HEAD

compenv.phys.ethz.ch FS 2025 15/19

Rebasing: Rewriting History

Re-apply commits to a new base
git rebase [<options>] <upstream>

• Re-apply differences with upstream on top of upstream
--interactive/-i: Manually apply changes

git rebase main

• Apply changes not in main on top of main
– Identify commits: git log upstream..HEAD
– (Hard reset) Workdir to upstream

and calculate patches ∆1, ∆2 and remove commits
– Apply patches, one-by-one
– Move branches

Benefits of rebase
• Avoids merges, keeps the history simple.
• Rework commits (or their massages)
• NEVER REBASE SHARED COMMITS!

main

a51d

93fd

064c

aacf

10f1

rebase done

9844 feat HEAD

compenv.phys.ethz.ch FS 2025 15/19

Remote Repositories

Remote repository
A remote is a pointer to an other copy of the repository, usually on an other machine or server.

• Remotes are managed with git remote

• Inter-repo commands are git clone/fetch/push/pull
• Remotes in a forge are often bare repositories, i.e. have no working dir and no index

git clone https:\github.com/project.git

• Create a local copy of a repository
(including working dir and index)

• Create a remote called origin

• Create a ”remote-tracking branch”
git remote add testing <URL>

• Add another remote

github.com/project.git

History

H

compenv.phys.ethz.ch FS 2025 16/19

Remote Repositories

Remote repository
A remote is a pointer to an other copy of the repository, usually on an other machine or server.

• Remotes are managed with git remote

• Inter-repo commands are git clone/fetch/push/pull
• Remotes in a forge are often bare repositories, i.e. have no working dir and no index

git clone https:\github.com/project.git
• Create a local copy of a repository

(including working dir and index)
• Create a remote called origin

• Create a ”remote-tracking branch”

git remote add testing <URL>
• Add another remote

origin

Work Dir Index History

List of remotes:

Local repository

H

github.com/project.git

History

H

compenv.phys.ethz.ch FS 2025 16/19

Remote Repositories

Remote repository
A remote is a pointer to an other copy of the repository, usually on an other machine or server.

• Remotes are managed with git remote

• Inter-repo commands are git clone/fetch/push/pull
• Remotes in a forge are often bare repositories, i.e. have no working dir and no index

git clone https:\github.com/project.git
• Create a local copy of a repository

(including working dir and index)
• Create a remote called origin

• Create a ”remote-tracking branch”
git remote add testing <URL>

• Add another remote

origin

Work Dir Index History

List of remotes:

Local repository

H

github.com/project.git

History

H

compenv.phys.ethz.ch FS 2025 16/19

Remote Repositories

Remote repository
A remote is a pointer to an other copy of the repository, usually on an other machine or server.

• Remotes are managed with git remote

• Inter-repo commands are git clone/fetch/push/pull
• Remotes in a forge are often bare repositories, i.e. have no working dir and no index

git clone https:\github.com/project.git
• Create a local copy of a repository

(including working dir and index)
• Create a remote called origin

• Create a ”remote-tracking branch”
git remote add testing <URL>

• Add another remote

github.com/project.git

History

H

origin

Work Dir Index History

List of remotes:

Local repository

H

testing
project.git

compenv.phys.ethz.ch FS 2025 16/19

Remote Repositories

Definition: Remote-tracking branch
A remote-tracking branch is a local branch referencing the state of a branch on a remote repository (called
upstream branch).

• e.g. origin/main is a local branch reffering to the main branch in the origin repository
• Can not be moved manually

• new local commit
– origin/feat stays

• git push

– send new commits
• new remote commit

– nothing changes
• git fetch

– get new commits
– move remote-tracking

branches

main 8ad1

ffa2

a631

cf41

bbaf feat

8ad1

ffa2

a631

cf41

bbaf
feat

origin/feat

origin/main

main

HEAD

Local Repository origin

compenv.phys.ethz.ch FS 2025 17/19

Remote Repositories

Definition: Remote-tracking branch
A remote-tracking branch is a local branch referencing the state of a branch on a remote repository (called
upstream branch).

• e.g. origin/main is a local branch reffering to the main branch in the origin repository
• Can not be moved manually

• new local commit
– origin/feat stays

• git push

– send new commits
• new remote commit

– nothing changes
• git fetch

– get new commits
– move remote-tracking

branches

main 8ad1

ffa2

a631

cf41

bbaf feat

8ad1

ffa2

a631

cf41

bbaf

feat

origin/feat

origin/main

main
HEAD

Local Repository origin

19fa

compenv.phys.ethz.ch FS 2025 17/19

Remote Repositories

Definition: Remote-tracking branch
A remote-tracking branch is a local branch referencing the state of a branch on a remote repository (called
upstream branch).

• e.g. origin/main is a local branch reffering to the main branch in the origin repository
• Can not be moved manually

• new local commit
– origin/feat stays

• git push

– send new commits

• new remote commit
– nothing changes

• git fetch

– get new commits
– move remote-tracking

branches

main 8ad1

ffa2

a631

cf41

bbaf

feat

8ad1

ffa2

a631

cf41

bbaf

feat

origin/feat
origin/main

main
HEAD

Local Repository origin

19fa 19fa

compenv.phys.ethz.ch FS 2025 17/19

Remote Repositories

Definition: Remote-tracking branch
A remote-tracking branch is a local branch referencing the state of a branch on a remote repository (called
upstream branch).

• e.g. origin/main is a local branch reffering to the main branch in the origin repository
• Can not be moved manually

• new local commit
– origin/feat stays

• git push

– send new commits
• new remote commit

– nothing changes

• git fetch

– get new commits
– move remote-tracking

branches

main

8ad1

ffa2

a631

cf41

bbaf

feat

8ad1

ffa2

a631

cf41

bbaf

feat

origin/feat
origin/main

main
HEAD

Local Repository origin

19fa 19fa

e618

compenv.phys.ethz.ch FS 2025 17/19

Remote Repositories

Definition: Remote-tracking branch
A remote-tracking branch is a local branch referencing the state of a branch on a remote repository (called
upstream branch).

• e.g. origin/main is a local branch reffering to the main branch in the origin repository
• Can not be moved manually

• new local commit
– origin/feat stays

• git push

– send new commits
• new remote commit

– nothing changes
• git fetch

– get new commits
– move remote-tracking

branches

main

8ad1

ffa2

a631

cf41

bbaf

feat

8ad1

ffa2

a631

cf41

bbaf

feat

origin/feat

origin/main

main
HEAD

Local Repository origin

19fa 19fa

e618e618

compenv.phys.ethz.ch FS 2025 17/19

Rules of thumb

• git status a lot!
• Separate changes: Commit (many) small logical steps

– Write meaningful commit messages
• Use a long running branches (main) + small topic branches (idea)
• Prefer git rebase over git merge

• Prefer git fetch over git pull

• Keep it simple!
• Avoid evil merges:

– Do not introduce new changes while resolving conflicts
• Never modified published commits
• Do not store large data within git
• Never commit secrets

compenv.phys.ethz.ch FS 2025 18/19

Where to go next

• Official Docs (git-scm.com/doc)
– git-scm.com/docs/gittutorial (basic usage)
– git-scm.com/docs/gittutorial-2 (internals)
– git-scm.com/docs/giteveryday (most common commands)
– git-scm.com/docs/gitglossary (all git terms)

• Cheat Sheets
– ndpsoftware.com/git-cheatsheet.html
– store.git-init.com

• Games
– ohmygit.org
– learngitbranching.js.org

• Other
– think-like-a-git.net
– stevelosh.com/blog/2013/04/git-koans
– xkcd.com/1597/

compenv.phys.ethz.ch FS 2025 19/19

