mzuriCh ISG D-PHYS

: “ X DY
P et &

Git Version Control

Stephan Miiller, ISG D-PHYS
HS 2025

Schedule

IT Security

Linux Basics | + Il

Git Version Control
Python Ecosystem | - IV
System Aspects

® Checkout compenv.phys.ethz.ch
® Give Feedback!

— isg@phys.ethz.ch
— chat.phys.ethz.ch
- HPTH

ETHzirich compenv.physthach FS 2025 1/19

"git gets easier once you get the basic idea that branches are homeomorphic
endofunctors mapping submanifolds of a Hilbert space.”

ETHzirich compenphys.ethach FS2025 2/19

"git gets easier once you get the basic idea that branches are homeomorphic
endofunctors mapping submanifolds of a Hilbert space.”

SECOND EDITION

Version Control with

Pro

Git

ApIESS OReLLY’

Pragmatic
%rsion Control
Using Git

Git: Version Control
for Everyone

ETHziirich s e

et
g

¢ Wb

Pragmatic Guide to
Git
Travis Swicegood

\
'\ | 3 IN PRACTICE
a
L

OREILLY

Learning Git Version
Git Control

Anna Skoulikari

Learning Goals

THIS IS GIT.

Co0L. HOU DO LWEVSE IT?
* Git # GitHub
NO IDEA. JUST MEMORIZE. THESE SHELL
COMMANDS AND TYPE THEM TO SYNC LR

® Fundamental Concepts

— Commit

- HEAD

— branch

— Work Dir + Index + Log

® History Concepts
— Inspect
— Navigate
— Modify

® Remotes

ETHzirich compenphysethach FS2025 3/19

Why use a version control system?

4 = | thesis

“ Home Share Wiew

~

o Mame ® Tracking changes
e [thesis ® Experimentation
A This PC L thesis2 ® Collaboration
) 3D Objects | | thesis2-backup
3 date Gataphy: L] thesi-fiml — If not now, maybe later
I Desktop L thesis-final2 ® Easy rollbacks

S ——, | | thesis-final-backup oS i

,_' thesis-final-really

[BOCUmEnE || thesis-ready-for-submissian ® Simplified backups
d My Music |] thesis-ready-for-submission_2 ® | ooks good in your CV
= My Pictures | | thesis-reviewed

Does your project look like this?

ETHzirich compenv.physthach FS 2025 4/19

Version Control Systems: Git # Github

Definition: Version Control System

A version control system (VCS) or source code
management system (SCM) helps to maintain different

versions of files.

FS 2025 5/19

ETHziirich compnhysihzch

Version Control Systems: Git # Github

Definition: Version Control System

A version control system (VCS) or source code
management system (SCM) helps to maintain different

versions of files.

® Git
— De facto standard in open source
— Built in 2005 to manage the Linux kernel

source code
— "l named it Git — because | am a git.”

FS 2025 5/19

ETHziirich compeneshys e h

Version Control Systems: Git # Github

Definition: Version Control System

A version control system (VCS) or source code
management system (SCM) helps to maintain different

versions of files.

® Git
— De facto standard in open source
— Built in 2005 to manage the Linux kernel
source code
— "l named it Git — because | am a git.”

® SubVersion (svn)

FS 2025 5/19

ETHziirich compeneshys e h

Version Control Systems: Git # Github

Definition: Version Control System

A version control system (VCS) or source code
management system (SCM) helps to maintain different

versions of files.

® Git
— De facto standard in open source
— Built in 2005 to manage the Linux kernel
source code
— "l named it Git — because | am a git.”
® SubVersion (svn)

® Concurent Version System (cvs)

FS 2025 5/19

ETHziirich compeneshys e h

Version Control Systems: Git # Github

Definition: Version Control System

A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.

® Git
— De facto standard in open source
— Built in 2005 to manage the Linux kernel

source code
— "l named it Git — because | am a git.”

® SubVersion (svn)
® Concurent Version System (cvs)

® Mercurial (hg)

FS 2025 5/19

ETHziirich compeneshys e h

Version Control Systems: Git # Github

Definition: Version Control System

A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.
® Git
— De facto standard in open source
— Built in 2005 to manage the Linux kernel

source code
— "l named it Git — because | am a git.”

® SubVersion (svn)

® Concurent Version System (cvs)
® Mercurial (hg)

® Fossil

— good Git alternative

ETHzirich compenv.physthach FS 2025 5/19

Version Control Systems: Git # Github

Definition: Version Control System

A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.
® Git
— De facto standard in open source
— Built in 2005 to manage the Linux kernel

source code
— "l named it Git — because | am a git.”

® SubVersion (svn)
® Concurent Version System (cvs)
® Mercurial (hg)
® Fossil
— good Git alternative
® game of trees (got)

— git compatable, but easier

ETHziirich compeneshys e h

FS 2025

5/19

Version Control Systems: Git # Github

Definition: Version Control System

A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.
® Git
— De facto standard in open source
— Built in 2005 to manage the Linux kernel

source code
— "l named it Git — because | am a git.”

® SubVersion (svn)
® Concurent Version System (cvs)
® Mercurial (hg)
® Fossil
— good Git alternative
® game of trees (got)

— git compatable, but easier

ETHzirich

compenv.phys.ethz.ch

Definition: Software Forge

A forge is a central web-based platform for collaboration
hosting extra tools

® Version control
® Bug tracking

® Continious Integration

FS 2025 5/19

Version Control Systems: Git # Github

Definition: Version Control System Definition: Software Forge

A version control system (VCS) or source code A forge is a central web-based platform for collaboration
management system (SCM) helps to maintain different hosting extra tools
versions of files. 0 Ve @stial
°* Git ® Bug tracking
— De facto standard in open source ® Continious Integration
— Built in 2005 to manage the Linux kernel
source code ® GitHub

— "l named it Git — because | am a git.”

® SubVersion (svn)

— github.com

® Concurent Version System (cvs)
® Mercurial (hg)
® Fossil
— good Git alternative
® game of trees (got)

— git compatable, but easier
ETHzirich compenv.physthach FS 2025 5/19

Version Control Systems: Git # Github

Definition: Version Control System Definition: Software Forge

A version control system (VCS) or source code A forge is a central web-based platform for collaboration

management system (SCM) helps to maintain different
versions of files.
* Git

— De facto standard in open source
— Built in 2005 to manage the Linux kernel

hosting extra tools
® Version control
® Bug tracking

® Continious Integration

source code e GitHub
— "l named it Git — because | am a git.” .
— github.com
® SubVersion (svn) o GitLab
itLa

® Concurent Version System (cvs)
® Mercurial (hg)
® Fossil
— good Git alternative
® game of trees (got)

— git compatable, but easier

ETHziirich compeneshys e h

— gitlab.phys.ethz.ch
— gitlab.ethz.ch

FS 2025

5/19

Version Control Systems: Git # Github

Definition: Version Control System Definition: Software Forge

A version control system (VCS) or source code A forge is a central web-based platform for collaboration

management system (SCM) helps to maintain different
versions of files.
* Git

— De facto standard in open source
— Built in 2005 to manage the Linux kernel

hosting extra tools
® Version control
® Bug tracking

® Continious Integration

source code e GitHub
— "l named it Git — because | am a git.” .
— github.com
® SubVersion (svn) o GitLab
itLa

® Concurent Version System (cvs)
® Mercurial (hg)
® Fossil
— good Git alternative
® game of trees (got)

— git compatable, but easier

ETHziirich compeneshys e h

— gitlab.phys.ethz.ch
— gitlab.ethz.ch

® Gitea

— Easy self-hosting

FS 2025

5/19

Version Control Systems: Git # Github

Definition: Version Control System

A version control system (VCS) or source code
management system (SCM) helps to maintain different
versions of files.
® Git
— De facto standard in open source
— Built in 2005 to manage the Linux kernel

source code
— "l named it Git — because | am a git.”

® SubVersion (svn)
® Concurent Version System (cvs)
® Mercurial (hg)
® Fossil
— good Git alternative
® game of trees (got)

— git compatable, but easier

ETHzirich

compenv.phys.ethz.ch

Definition: Software Forge

A forge is a central web-based platform for collaboration
hosting extra tools

® Version control
® Bug tracking

® Continious Integration

® GitHub
— github.com
GitLab

— gitlab.phys.ethz.ch
— gitlab.ethz.ch

® Gitea
— Easy self-hosting
® Codeberg.org

FS 2025 5/19

Git Concepts: Commits & HEAD

ETHzirich compenphys.ethach FS2025 6/19

Git Concepts: Commits & HEAD

® Git tracks files and directories

ETHziirich compeny physethz.ch FS2025 6/19

Git Concepts: Commits & HEAD

® Git tracks files and directories Definition: Commit

A commit is a snapshot on all tracked files at a given
time.

(It is NOT the "diff” between versions)

Commit 1

)
)
o)

ETHzirich compenv.physthach FS 2025 6/19

Git Concepts: Commits & HEAD

® Git tracks files and directories Definition: Commit

® Git remebers all snapshots A commit is a snapshot on all tracked files at a given
— Work on files & git commit time.
(It is NOT the "diff" between versions)

Commit 1 —® Commit 2

ETHzirich compenv.physthach FS 2025 6/19

Git Concepts: Commits & HEAD

® Git tracks files and directories Definition: Commit

® Git remebers all snapshots A commit is a snapshot on all tracked files at a given
— Work on files & git commit time.
— Work on files & git commit (It is NOT the "diff" between versions)

Commit 1 —® Commit 2 —® Commit 3

ETHzirich compenv.physthach FS 2025 6/19

Git Concepts: Commits & HEAD

® Git tracks files and directories Definition: Commit

® Git remebers all snapshots A commit is a snapshot on all tracked files at a given
— Work on files & git commit time.
— Work on files & git commit (It is NOT the "diff" between versions)

® You always have a coherent view on all files

Commit 3

)
5]
a)

ETHzirich compenv.physthach FS 2025 6/19

Git Concepts: Commits & HEAD

® Git tracks files and directories Definition: Commit

® Git remebers all snapshots A commit is a snapshot on all tracked files at a given
— Work on files & git commit time.
— Work on files & git commit (It is NOT the "diff" between versions)

® You always have a coherent view on all files

— You can move back and forth in history
> git switch Commit1* Commit, 1

)
5]
o)

ETHzirich compenv.physthach FS 2025 6/19

Git Concepts: Commits & HEAD

® Git tracks files and directories Definition: Commit

® Git remebers all snapshots A commit is a snapshot on all tracked files at a given
— Work on files & git commit time.
— Work on files & git commit (It is NOT the "diff" between versions)

® You always have a coherent view on all files

— You can move back and forth in history
» git switch Commit1* Commit 1| ———————— ¥ (Commit 3
— You can compare diffenrent versions
> git diff Commitl..Commit3

ACL UACY

ETHzirich compenv.physthach FS 2025 6/19

Git Concepts: Commits & HEAD

® Git tracks files and directories Definition: Commit

® Git remebers all snapshots A commit is a snapshot on all tracked files at a given
— Work on files & git commit time.
— Work on files & git commit (It is NOT the "diff" between versions)

® You always have a coherent view on all files

— You can move back and forth in history

» git switch Commit1* 9eled7
— You can compare diffenrent versions
> git diff Commitl..Commit3 A
. 2
® Commits have hash names:

— 9ele4739a9ca2e4750011ceaac818c16982e
— 9ele47 - any prefix is OK, if it is unique B

ETHzirich compenv.physthach FS 2025 6/19

Git Concepts: Commits & HEAD

® Git tracks files and directories Definition: Commit

® Git remebers all snapshots A commit is a snapshot on all tracked files at a given
— Work on files & git commit time.
— Work on files & git commit (It is NOT the "diff" between versions)

® You always have a coherent view on all files

— You can move back and forth in history
» git switch Commit1* 9eled7
— You can compare diffenrent versions

> git diff Commitl..Commit3 flf
2

® Commits have hash names:

— 9ele4739a9ca2e4750011ceaac818c16982e
— 9ele47 - any prefix is OK, if it is unique B

® The current commit is refered to as HEAD
Cs

ETHzirich compen.physthach FS 2025 6/19

Git Concepts: Commits & HEAD

® Git tracks files and directories Definition: Commit

A commit is a snapshot on all tracked files at a given

® Git remebers all snapshots
time.

— Work on files & git commit
— Work on files & git commit (It is NOT the "diff" between versions)
® You always have a coherent view on all files

— You can move back and forth in history

» git switch Commit1* 9eled7
— You can compare diffenrent versions

> git diff Commitl..Commit3

4]

® Commits have hash names:

— 9ele4739a9ca2e4750011ceaac818c16982e
— 9ele47 - any prefix is OK, if it is unique B

® The current commit is refered to as HEAD

Definition: HEAD C3

HEAD is a spacial pointer, referring to the commit* your
working tree is currently based on.
FS2025 6/19

ETHzirich compeneshys e h

Git Concepts: Branches

ETHzirich compeny.phys.ethz.ch FS2025 7/19

Git Concepts: Branches

Defintion: Branch

A branch is a pointer to a single commit.

(It is NOT a set or leg of commits)

ETHzirich compen.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch

ETHzirich compenv.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

ETHzirich compenv.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea”
— i.e. create a new pointer

ETHzirich compenv.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea”
— i.e. create a new pointer

® git switch idea

— Make the branch idea active
— i.e. move the HEAD pointer

ETHzirich compenv.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea”
— i.e. create a new pointer

® git switch idea

— Make the branch idea active
— i.e. move the HEAD pointer

ETHzirich compenv.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea”
— i.e. create a new pointer

® git switch idea

— Make the branch idea active
— i.e. move the HEAD pointer

ETHzirich compenv.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea”
— i.e. create a new pointer

® git switch idea

— Make the branch idea active
— i.e. move the HEAD pointer

® git switch main

— Switch back to branch main

ETHzirich compenv.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea”
— i.e. create a new pointer

® git switch idea

— Make the branch idea active
— i.e. move the HEAD pointer

® git switch main

— Switch back to branch main

ETHzirich compenv.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea”
— i.e. create a new pointer

® git switch idea

— Make the branch idea active
— i.e. move the HEAD pointer

® git switch main

— Switch back to branch main

ETHzirich compenv.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea” merge-base 03fa acOa
— i.e. create a new pointer

® git switch idea

— Make the branch idea active
— i.e. move the HEAD pointer

® git switch main

— Switch back to branch main

® git merge idea

— Apply "new deltas from idea” to main
— There may be merge conflicts!

ETHzirich compenv.physthach FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea” merge-base 03fa acOa
— i.e. create a new pointer

® git switch idea

— Make the branch idea active
— i.e. move the HEAD pointer

® git switch main

— Switch back to branch main

® git merge idea

— Apply "new deltas from idea” to main Detached HEAD

= There may be merge conflicts! If HEAD does not point to a branch, it is called a

. detached HEAD. git itch back to a branch!
ETHzirich compenv.physthach g1t switc FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea”
— i.e. create a new pointer

® git switch idea

— Make the branch idea active
— i.e. move the HEAD pointer

® git switch main

— Switch back to branch main

git switch --detach 03fa

® git merge idea

— Apply "new deltas from idea” to main Detached HEAD

= There may be merge conflicts! If HEAD does not point to a branch, it is called a

. detached HEAD. git itch back to a branch!
ETHzirich compenv.physthach g1t switc FS 2025 7/19

Git Concepts: Branches

Defintion: Branch

® History advances on branches A branch is a pointer to a single commit.

— The default branch is called main or master (It is NOT a set or leg of commits)
— HEAD points to a branch
— The branch moves with the HEAD pointer

® git branch idea

— Create a new branch called "idea”
— i.e. create a new pointer

® git switch idea

— Make the branch idea active
— i.e. move the HEAD pointer

® git switch main

— Switch back to branch main

git switch --detach 6ffa

® git merge idea

— Apply "new deltas from idea” to main Detached HEAD

= There may be merge conflicts! If HEAD does not point to a branch, it is called a

. detached HEAD. git itch back to a branch!
ETHzirich compenv.physthach g1t switc FS 2025 7/19

Getting Started

Installation

® |nstallation (git-scm.com/downloads)
— Linux/Mac: apt install git-all / brew install git
— Win: gitforwindows.org
® Command line interface
— git [verb] [options] [args]
P> eg. git add A.txt
> eg. git log --oneline origin..HEAD
— man git-[verb]

ETHzirich compenv.physthach FS 2025 8/19

Getting Started

Installation
® |nstallation (git-scm.com/downloads)

— Linux/Mac: apt install git-all / brew install git
— Win: gitforwindows.org

® Command line interface

— git [verb] [options] [args]

P> eg. git add A.txt

> eg. git log --oneline origin..HEAD
— man git-[verb]

Minimal first time config

® git config --global user.name "Ann Yusar" (or $GIT_AUTHOR_NAME)
® git config --global user.email "anyQethz.ch" (or $GIT_AUTHOR_EMAIL)
® git config --global core.editor vim (or $GIT_EDITOR)

ETHzirich compenv.physthach FS 2025 8/19

Local repository

® git works on directories

ETHzirich

compen.phys.ethz.ch

Working directroy

FS 2025

9/19

Local repository

® git works on directories

— git init creates .git/

ETHzirich

compenv.phys.ethz.ch

Working directroy

Local Repository (.git/)

FS 2025

9/19

Local repository

® git works on directories

— git init creates .git/

® Commit History

— files, commits, ...

are stored in .git/objects/

— Objects are indexed by their content

ETHziirich

compenv.phys.ethz.ch

Working directroy

N

Ay

Local Repository (.git/)

Commit History
(.git/objects/)

m

FS 2025

9/19

Local repository

® git works on directories

— git init creates .git/

® Commit History

— files, commits, ...

are stored in .git/objects/

— Objects are indexed by their content

® Staging Area / Index

— Area to draft a commit

ETHziirich

compenv.phys.ethz.ch

Working directroy

N

Ay

Local Repository (.git/)

Staging Area
(.git/index)

Commit History
(.git/objects/)

m

FS 2025

9/19

Local repository

° glt works on directories Local Repository (.git/)
sk . Working directroy Staging Area Commit History
- git init creates .git/ (.git/index) (.git/objects/)
® Commit History N
— files, commits, ... are stored in .git/objects/
— Objects are indexed by their content
® Staging Area / Index G Om
. B
— Area to draft a commit e
® Change A
ETHzirich

compenv.phys.ethz.ch

FS 2025 9/19

Local repository

° glt works on directories Local Repository (.git/)
sk . Working directroy Staging Area Commit History
— git init creates .git/ (.git/index) (.git/objects/)
® Commit History N
— files, commits, ... are stored in .git/objects/
— Objects are indexed by their content
® Staging Area / Index & Om
. B
— Area to draft a commit e
® Change A
® Change C

ETHziirich compeny phys th.ch

FS 2025 9/19

Local repository

® git works on directories Local Repository (.git/)

Working directroy

sk . Staging Area Commit History
— git init creates .git/ (.git/index) (.git/objects/)
® Commit History N git add
— files, commits, ... are stored in .git/objects/ (git rdstore -fskaged)
— Objects are indexed by their content
® Staging Area / Index & Om
. B
— Area to draft a commit =]

— git add/restore --staged

® Change A
® Change C
® git add A

ETHziirich compens phys.ethzch

FS 2025 9/19

Local repository

® git works on directories

— git init creates .git/

® Commit History

— files, commits, ...

are stored in .git/objects/

— Objects are indexed by their content

® Staging Area / Index

— Area to draft a commit
— git add/restore --staged

ETHziirich

compenv.phys.ethz.ch

Working directroy

N

Ay

©h git add

Local Repository (.git/)

Staging Area
(.git/index)

Ay

Commit History

(.git/objects/)

m

Change A
Change C
git add A
git add C

FS 2025

9/19

Local repository

° glt works on directories Local Repository (.git/)
S s . Working directroy Staging Area Commit History
— git init creates .git/ (.git/index) (.git/objects/)
® Commit History A
— files, commits, ... are stored in .git/objects/ git commit
— Objects are indexed by their content
® Staging Area / Index % Om
8" =]

— Area to draft a commit
— git add/restore --staged

® git commit

— Add changes to the history ¢ Change A
» Author and Date ® Change C

» Commit message ® git add A

® git add C

® git commit

ETHzirich compeny.phys.cthz.ch FS2025 9/19

Local repository

° glt works on directories Local Repository (.git/)
L . Working directroy Staging Area Commit History
— git init creates .git/ (.git/index) (.git/objects/)

® Commit History

— files, commits, ... are stored in .git/objects/
— Objects are indexed by their content

® Staging Area / Index Co

— Area to draft a commit
— git add/restore --staged

® git commit

— Add changes to the history ® Change A
» Author and Date ¢ Change C
» Commit message ® git add A
— HEAD and branch pointer move * git add C

— Staging area is empty again
® git commit

ETHzirich compeny.phys.cthz.ch FS2025 9/19

Local repository

® git works on directories

— git init creates .git/

® Commit History

— files, commits, ... are stored in .git/objects/
— Objects are indexed by their content

® Staging Area / Index

— Area to draft a commit
— git add/restore --staged

® git commit

— Add changes to the history

» Author and Date
» Commit message

— HEAD and branch pointer move
— Staging area is empty again

ETHzirich

compenv.phys.ethz.ch

Local Repository (.git/)

Working directroy Staging Area
(.git/index)

Commit History
(.git/objects/)

® Change A
® Change C

How to keep the overview?
® git add A

git status is your friend!

® git add C

® git commit

FS 2025 9/19

A lot of git is about mananging its areas!

WORKSPAGE INDEX POSITORY UPSTREAM
REPOSITORY

diff «commit or branch:
ommit -a [-m "msg']

reset —hard
reset ——hard remote:/<branch
kR switch <branch
E checkout -b «rame of new branch:
P merge «commit or b.
rebase wpstream b.
[, cherry-pick «commit
revert «commit
[@iff —cached [commit

commit [-m 'msg']
commit -—amend

ETH:ziirich compenv.physthach FS 2025 10/19

Demo

® Write some poems and version control them via git:

— Create a poen folder
Initialize a git repositiory
— Add some poems

— Commit your work

® Tools:

— git init
— git add
— git commit

® Check regularly what is going on:

— git status
— tree -a

ETHzirich compeneshys e h

mkdir poems
cd poems
git init
— Creates .git/
(tree -a)
(fd sample .git -x rm)
— Removes example files
Write some poems
git add geometry.txt flowers.txt
— Adds files to staging area
(git status)
git commit

— Adds a new commit

FS 2025

11/19

Git States

In the staging area, not yet commited. Added
by a git add.

‘Working directroy Local Repository

Staging Area Commit History
staged clean

B

modiﬁcdﬁ _ untracked Stashing Stack
T
E

B —“mshed

ETHziirich compeny.physethz.ch FS2025 12/19

Git States

Staged

In the staging area, not yet commited. Added
by a git add.

Clean

Tracked, unmodiefied compared to its last
version.

ETHzirich

compenv.phys.ethz.ch

‘Working directroy

staged clean

modiﬁcdﬁ _ untracked

oo stashed

Local Repository

Staging Area

Ay

Commit History

Stashing Stack

FS 2025 12/19

Git States

Staged

In the staging area, not yet commited. Added

by a git add.

‘Working directroy Local Repository

Tracked, unmodiefied compared to its last Staging Area Commit History
version. staged clean

-
Modified - . Az
Tracked and different from its last version.

modiﬁedﬁ - untracked Stashing Stack

oo stashed

ETHzirich compenv.physthach FS 2025 12/19

Git States

In the staging area, not yet commited. Added
by a git add.

Clean

Tracked, unmodiefied compared to its last
version.

Modified

Tracked and different from its last version.

Clean, because changes are stashed away
with git stash.

ETHziirich compnhys ihzch

‘Working directroy

staged clean

modiﬁedﬁ _ untracked

oo stashed

Local Repository

Staging Area Commit History

Ay

Stashing Stack

FS 2025 12/19

Git States

In the staging area, not yet commited. Added
by a git add.

Clean

Tracked, unmodiefied compared to its last
version.

Modified

Tracked and different from its last version.

Clean, because changes are stashed away
with git stash.

Never added, git does not care.

ETHziirich compnhys ihzch

‘Working directroy

staged clean

modiﬁedﬁ _ untracked

oo stashed

Local Repository

Staging Area

Ay

Commit History

Stashing Stack

FS 2025 12/19

Inspecting History: git log

Inspect the commit log

® git log [<options>] [<revision-range>] [-- file]

--stat: Show statistics, how many changes per file
--patch / -p: Show differences

—--graph: Draw history as graph

--max-count/-n N: Show at most N commits
--all: Add all branches (to rev-range)

—-oneline: Only show summary line

—-— FILE: Show commits which changed FILE

ETHzirich compeny.physethz.ch FS2025 13/19

Inspecting History: git log

Inspect the commit log

® git log [<options>] [<revision-range>] [-- file]

--stat: Show statistics, how many changes per file
--patch / -p: Show differences

—--graph: Draw history as graph

--max-count/-n N: Show at most N commits
--all: Add all branches (to rev-range)

—-oneline: Only show summary line

-- FILE: Show commits which changed FILE

git log --oneline --all --graph

* 064c6f1l (HEAD -> main) Fix flower poem
| * ce2e2f0 (2ndVerse) Improve math

| * d479f9f Add 1st draft

I/

* ab1dfb4 Make it rhyme

* 93fde7d Complete flower poem

* ed74ade Add poems

ETHzirich compnhysihzch

FS 2025

13/19

Inspecting History: git log

git log --oneline d479..064c
git log --oneline ~d479 064c

064c6f1 (->) Fix flower poem

ETHziirich compeny.physethz.ch FS2025 13/19

Inspecting History: git log

git log --oneline d479..064c
git log --oneline ~d479 064c

064c6f1 (->) Fix flower poem

® Show everything reachable from 064c

ETHziirich compeny.physethz.ch FS2025 13/19

Inspecting History: git log

git log --oneline d479..064c
git log --oneline ~d479 064c

main HEAD
fe29

064c6f1 (HEAD ->) Fix flower poem

® Show everything reachable from 064c

® Exclude everything reachable from d479

ETHzirich compeneshys e h

FS2025 13/19

Inspecting History: git log

git log --oneline d479..064c
git log --oneline ~d479 064c

064c6f1 (HEAD ->) Fix flower poem

® Show everything reachable from 064c

® Exclude everything reachable from d479

git log --oneline main..2ndVerse

ce2e2f0 () Improve math
d479f9f Add 1st draft

® What is on 2ndVerse but not on main?

ETHziirich compeny.physethz.ch FS2025 13/19

Navigating History

Moving HEAD

git reset [<mode>] 93fd

Move HEAD and its branch to a commit.

ETHziirich compeneshys e h

Fy
Index
g
staged clean

Working directroy

FS 2025 14/19

Navigating History

Moving HEAD

git reset [<mode>] 93fd
Move HEAD and its branch to a commit.

--mixed: Update Index (Default)

ETHziirich compeneshys e h

Index
dirty dirty

Working directroy

s Bfanavers:]
)G

Log

FS 2025

14/19

Navigating History

Moving HEAD

git reset [<mode>] 93fd
Move HEAD and its branch to a commit.
--mixed: Update Index (Default)
--soft: Update nothing

ETHziirich compeneshys e h

Fy
Index
staged dirty

Working directroy

s Bfanavers:]
)G

Log

FS 2025

14/19

Navigating History

Moving HEAD

git reset [<mode>] 93fd
Move HEAD and its branch to a commit.

--mixed: Update Index (Default)
--soft: Update nothing
--hard Update Index + Workdir

— You will lose changes!

ETHziirich compeneshys e h

Index

clean clean

Working directroy

FS 2025 14/19

Navigating History

Moving HEAD

git reset [<mode>] 93fd
Move HEAD and its branch to a commit.

--mixed: Update Index (Default)
--soft: Update nothing
--hard Update Index + Workdir

— You will lose changes!

Switching branches

git switch <branch>

® Supersedes git checkout

ETHziirich compeneshys e h

Index

G

clean clean

Working directroy

FS 2025 14/19

Navigating History

Moving HEAD

git reset [<mode>] 93fd
Move HEAD and its branch to a commit.

--mixed: Update Index (Default)
--soft: Update nothing
--hard Update Index + Workdir

— You will lose changes!

Switching branches

git switch <branch>

® Supersedes git checkout

git switch 2ndVerse

ETHzirich compeneshys e h

Index

G

clean clean

Working directroy

FS 2025 14/19

Navigating History

Moving HEAD

git reset [<mode>] 93fd
Move HEAD and its branch to a commit.

--mixed: Update Index (Default)
--soft: Update nothing
--hard Update Index + Workdir

— You will lose changes!

Switching branches

git switch <branch>

® Supersedes git checkout

git switch 2ndVerse
® Move HEAD to 2ndVerse
® Update Working Dir
ETHzirich

compen.phys.ethz.ch

Index

G

clean clean

Working directroy

FS 2025 14/19

Rebasing: Rewriting History

Re-apply commits to a new base

git rebase [<options>] <upstream>
® Re-apply differences with upstream on top of upstream

--interactive/-i: Manually apply changes

git rebase main

® Apply changes not in main on top of main

FS2025 15/19

ETHziirich compeneshys e h

Rebasing: Rewriting History

Re-apply commits to a new base

git rebase [<options>] <upstream>
® Re-apply differences with upstream on top of upstream

--interactive/-i: Manually apply changes

git rebase main
® Apply changes not in main on top of main

— Identify commits: git log upstream..HEAD

ETHziirich compeneshys e h

FS 2025

15/19

Rebasing: Rewriting History

Re-apply commits to a new base

git rebase [<options>] <upstream>
® Re-apply differences with upstream on top of upstream

--interactive/-i: Manually apply changes

git rebase main
(upstream)

® Apply changes not in main on top of main

— Identify commits: git log upstream..HEAD
— (Hard reset) Workdir to upstream
and calculate patches A, Ag and remove commits

during rebase

FS2025 15/19

ETHziirich compeneshys e h

Rebasing: Rewriting History

Re-apply commits to a new base

git rebase [<options>] <upstream>
® Re-apply differences with upstream on top of upstream

--interactive/-i: Manually apply changes

git rebase main (upstream)
® Apply changes not in main on top of main
— Identify commits: git log upstream..HEAD
— (Hard reset) Workdir to upstream
and calculate patches A, Ag and remove commits
— Apply patches, one-by-one

during rebase

FS2025 15/19

ETHziirich compeneshys e h

Rebasing: Rewriting History

Re-apply commits to a new base

git rebase [<options>] <upstream>
® Re-apply differences with upstream on top of upstream

--interactive/-i: Manually apply changes

git rebase main (upstream)
® Apply changes not in main on top of main
— Identify commits: git log upstream..HEAD
— (Hard reset) Workdir to upstream
and calculate patches A, Ag and remove commits
— Apply patches, one-by-one

during rebase

FS2025 15/19

ETHziirich compeneshys e h

Rebasing: Rewriting History

Re-apply commits to a new base

git rebase [<options>] <upstream>

® Re-apply differences with upstream on top of upstream

--interactive/-i: Manually apply changes

git rebase main
® Apply changes not in main on top of main

— Identify commits: git log upstream..HEAD
— (Hard reset) Workdir to upstream
and calculate patches A, Ag and remove commits
— Apply patches, one-by-one
— Move branches

rebase done

ETHziirich compeny.physethz.ch FS2025 15/19

Rebasing: Rewriting History

Re-apply commits to a new base

git rebase [<options>] <upstream>
® Re-apply differences with upstream on top of upstream

--interactive/-i: Manually apply changes

git rebase main
® Apply changes not in main on top of main

— Identify commits: git log upstream..HEAD
— (Hard reset) Workdir to upstream
and calculate patches A, Ag and remove commits
— Apply patches, one-by-one
— Move branches

Benefits of rebase

® Avoids merges, keeps the history simple.
® Rework commits (or their massages)

® NEVER REBASE SHARED COMMITS!
ETHzirich compeny.physethz.ch

rebase done

FS 2025

15/19

Remote Repositories

Remote repository

A remote is a pointer to an other copy of the repository, usually on an other machine or server.
® Remotes are managed with git remote
® Inter-repo commands are git clone/fetch/push/pull

® Remotes in a forge are often bare repositories, i.e. have no working dir and no index

git clone https:\github.com/project.git github.com/project.git

History

ETHziirich compeny.physethz.ch FS2025 16/19

Remote Repositories

Remote repository

A remote is a pointer to an other copy of the repository, usually on an other machine or server.
® Remotes are managed with git remote
® Inter-repo commands are git clone/fetch/push/pull

® Remotes in a forge are often bare repositories, i.e. have no working dir and no index

Local repository github.com/project.git
git clone https:\github.com/project.git Work Dir Tndox Thistory Tistory
® Create a local copy of a repository
(including working dir and index) D D
® Create a remote called origin D
® Create a "remote-tracking branch List of remotes:

ETHziirich compeny.physethz.ch FS2025 16/19

Remote Repositories

Remote repository

A remote is a pointer to an other copy of the repository, usually on an other machine or server.
® Remotes are managed with git remote
® Inter-repo commands are git clone/fetch/push/pull

® Remotes in a forge are often bare repositories, i.e. have no working dir and no index

Local repository github.com/project.git
it clone https:\github.co oject.git
g o ps:\githu m/pro] g ‘Work Dir Index History History
® Create a local copy of a repository
(including working dir and index) D D
® Create a remote called origin D
® Create a "remote-tracking branch”
. . List of remotes:
git remote add testing <URL>
® Add another remote

ETHziirich compeny.physethz.ch FS2025 16/19

Remote Repositories

Remote repository

A remote is a pointer to an other copy of the repository, usually on an other machine or server.

® Remotes are managed with git remote

® Inter-repo commands are git clone/fetch/push/pull

® Remotes in a forge are often bare repositories, i.e. have no working dir and no index

git clone https:\github.com/project.git
® Create a local copy of a repository
(including working dir and index)
® Create a remote called origin
® Create a "remote-tracking branch”
git remote add testing <URL>

® Add another remote

ETHzirich compeneshys e h

Local repository

github.com/project.git

‘Work Dir

00
[

Index

History

List of remotes: | 0rigin
roject.git
testing —/'p jecte

History

UL

FS 2025 16/19

Remote Repositories

Definition: Remote-tracking branch

A remote-tracking branch is a local branch referencing the state of a branch on a remote repository (called
upstream branch).
® e.g. origin/main is a local branch reffering to the main branch in the origin repository

® Can not be moved manually

Local Repository origin

ETHziirich compeny.physethz.ch FS2025 17/19

Remote Repositories

Definition: Remote-tracking branch

A remote-tracking branch is a local branch referencing the state of a branch on a remote repository (called
upstream branch).
® e.g. origin/main is a local branch reffering to the main branch in the origin repository

® Can not be moved manually

® new local commit

Local Repository origin

— origin/feat stays

ETHziirich compeny.physethz.ch FS2025 17/19

Remote Repositories

Definition: Remote-tracking branch

A remote-tracking branch is a local branch referencing the state of a branch on a remote repository (called
upstream branch).
® e.g. origin/main is a local branch reffering to the main branch in the origin repository

® Can not be moved manually

® new local commit

Local Repository origin

— origin/feat stays
® git push

— send new commits

ETHziirich compeny.physethz.ch FS2025 17/19

Remote Repositories

Definition: Remote-tracking branch

A remote-tracking branch is a local branch referencing the state of a branch on a remote repository (called
upstream branch).

® e.g. origin/main is a local branch reffering to the main branch in the origin repository

® Can not be moved manually

® new local commit

Local Repository origin

— origin/feat stays
® git push

— send new commits
® new remote commit

— nothing changes

ETHziirich compeny.physethz.ch FS2025 17/19

Remote Repositories

Definition: Remote-tracking branch

A remote-tracking branch is a local branch referencing the state of a branch on a remote repository (called
upstream branch).

e.g. origin/main is a local branch reffering to the main branch in the origin repository

Can not be moved manually

new local commit

Local Repository origin

— origin/feat stays
git push

— send new commits
new remote commit

— nothing changes
git fetch

— get new commits
— move remote-tracking
branches

ETHziirich compeny.physethz.ch FS2025 17/19

Rules of thumb

® git status a lot!
® Separate changes: Commit (many) small logical steps
— Write meaningful commit messages
® Use a long running branches (main) + small topic branches (idea)
® Prefer git rebase over git merge
® Prefer git fetch over git pull
® Keep it simple!
® Avoid evil merges:
— Do not introduce new changes while resolving conflicts
® Never modified published commits
® Do not store large data within git

® Never commit secrets

ETHzirich compeny.phys.ethz.ch FS2025 18/19

Where to go next

® Official Docs (git-scm.com/doc)

— git-scm.com/docs/gittutorial (basic usage)

— git-scm.com/docs/gittutorial-2 (internals)

— git-scm.com/docs/giteveryday (most common commands)
— git-scm.com/docs/gitglossary (all git terms)

® Cheat Sheets

— ndpsoftware.com/git-cheatsheet.html
— store.git-init.com

® Games

— ohmygit.org
— learngitbranching.js.org

® Other

— think-like-a-git.net
— stevelosh.com/blog/2013/04 /git-koans
— xked.com/1597/

ETHzirich compeny.phys.ethz.ch FS2025 19/19

